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1. Introduction 

 

1. Motivation 

 

Motor vehicle crashes on US roadways have been a serious problem for decades, 

consistently causing death, injury, and financial losses each year.  For example, crash-related 

fatalities per year have fluctuated between 30-55 thousand since 1950, even though the 

normalized fatality rate per mile traveled has decreased (Fig. 1).   Mileage has increased, 

working against the reduced fatality rate. 

 

 
Figure 1.  Crash-related fatalities and fatality rates per 100 million vehicle miles traveled 

(VMT), 1948-2010.  Reproduced from US Department of Transportation report [1]. 
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More locally in Texas alone, in 2010, crashes caused the deaths of 3023 people and an 

estimated $20 billion dollars in economic losses [2].  The economic losses include property 

damage and productivity losses due to lost work.   

 

Because of the harmful consequences of crashes, government and industry are interested in 

better predicting, preventing, and responding to them.  Models of crash occurrence can help 

them do that.  With good crash prediction, local police and emergency services can be 

preemptively dispatched.  At the larger regional level, governments, insurance, and shipping 

companies can better budget for expected crash numbers.  Finally, models of crash counts 

may help identify causes of crashes, as well as help flag major changes in crash patterns. 

 

The purpose of this project is to examine the use of time-series models for crash counts.  

Numerous factors contribute to individual crashes, including alcohol use, driver age, speed, 

traffic, location, lighting, road characteristics, date, time, and vehicle characteristics.  At a 

broader level, regional crash counts similarly have many influences, including alcohol laws, 

driver age limits, speed limits, climate, time period, population, population density, car 

ownership rates, road infrastructure, and police presence.  Instead of incorporating all these 

factors into one model, a simpler ARMA model could be an alternative.  This project 

attempts to find when ARMA modeling could be useful.   

 

2. Data Set 

 

Government agencies are required to record crash counts due to federal law.  By legal 

definition, a “crash” involves death, injury, or property damage of $1000 or more, and only 

these severe crashes are reported.  From these databases, I obtained daily crash count data 

sets for the states of Texas [3] and Illinois [4] from 2004-2010 and the city of Austin [5] from 

2007-2010 (Fig. 2).   

 
Figure 2.  Raw daily crash counts for Texas, Illinois, and Austin. 

 

These data sets were chosen because of personal and local interest, availability and 

accessibility, and to allow comparison across different regions.  As shown, in this time period 

Texas and Illinois both have similar average crash counts of about 1100 crashes/day, while 

the city of Austin has two orders of magnitude less at about 33 crashes/day. Texas and 
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Illinois differ greatly in geography and climate.  While Texas has the greater population, 

Illinois has the greater population density, which may contribute to why their average crash 

counts are similar.  Spikes are more apparent for Illinois, and a related question is whether 

ARMA models can predict these, or if they can explain any seasonal occurrence of crashes.    

 

2. Crash Count Dynamics 

 

1. Analysis Method 

 

ARMA models were fit to the data to analyze general dynamics of crash counts.  The goal 

was to identify any common orders, trends, and seasonalities among the three regions.  

Furthermore, because the daily data is visibly so noisy (Fig. 1), the data were summed by 

week and by month for further analysis of the data at different sampling intervals.  The 

effects of region and sampling interval on the model were sought.   

 

As an example of the analysis method, the Texas state daily data are analyzed in detail here.   

First, the data set was detrended by fitting a least-squares linear trend through it (Fig. 2) and 

then subtracting the trend from the data. A linear trend was assumed due to slow change in 

mean value in this time period for all three data sets.  The resulting data set had a constant 

mean of zero.   

 

 
Figure 2.  Fitting and subtracting a linear trend from raw data. 

 

Then ARMA models of increasing order were fit to the detrended data until F-testing 

showed that the model root-sum-square (RSS) values no longer significantly decreased.  

Standard Matlab code was used for this analysis.  The autocorrelation function of the 

resulting ARMA model noise or residuals was analyzed to ensure white noise (Fig. 3).  Using 

the Matlab “resid” function, 95% of autocorrelation values had to lie within the critical 

2/sqrt(N) threshold to indicate white noise.   
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Figure 3.  Autocorrelation function of daily Texas state ARMA(10,9) model.   

 

This Texas case, and most all other cases, gave white noise residuals using the standard F-

test method.  In one case only (monthly Texas data), the standard method gave a model 

with possibly non-white noise residuals, and its model was increased further until white 

noise was observed.  This is detailed below and in the Appendix.  

 

After confirming white noise residuals, the resulting model was plotted to visually analyze 

its fit.  The daily Texas model here shows some of the erratic behavior of the original data.  

To help characterize and compare models across different regions and sampling intervals, a 

kind of “signal-to-noise” ratio was obtained by finding the ratio of model variance to model 

noise variance.   

 

 
Figure 4.  Actual and modeled detrended daily Texas crash count. 

 

The roots of the autoregressive part of the ARMA model were plotted in the complex plane, 

in order to identify possible trends and seasonalities in the crash data where root 

magnitudes approached 1.  The daily Texas model roots shown here indicate most strongly a 

number of patterns, compared to the other models obtained (Appendix 6.1).  As shown (Fig. 

5), the single real root λ=0.98 weakly suggested a constant linear trend, while the three 

pairs of complex roots nearly on the unit circle (|λ|>0.9999) indicated seasonalities of 7, 7/2 

and 7/3 days.   
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Figure 5.  Roots of the AR part of the detrended Texas daily crash model.  

 

The presence of the linear trend was tested by finding the associated parsimonious model 

and checking for non-significant increases in model RSS.  In this case, the parsimonious 

model Pt = (1-B)Xt was modeled with a one-order-lower ARMA(9,9).  The F-test compared 

the unrestricted (10,9) model RSS with the restricted (9,9) model RSS according to the 

standard equation:  

F = [(A1-A0)/s] / [A0/(N-r)] 

In this case of testing the constant trend parsimonious model for the daily Texas data, the F-

value exceeded the critical threshold F95%
(s,N-r), meaning that the parsimonious model had a 

significantly larger RSS and was not adequate.  In other words, the constant trend could not 

be confirmed, which may be expected given that this root was not closer in magnitude to 1.   

 

Details of the F-tests for checking parsimonious for the daily data are shown in Appendix 

6.2.  To summarize, none of the parsimonious models associated with trends and 

seasonalities indicated by the plots of roots were found to be adequate, for not only the 

Texas daily data but also the Illinois and Austin data.  F-statistics consistently showed that 

the unrestricted, non-parsimonious models significantly improved the model RSS values. 

This method was applied to the Texas, Illinois, and Austin data, for daily, weekly, and 

monthly sampling intervals.   

 

2. Effect of Sampling Interval 

 

One goal of checking larger than daily sampling intervals was to see if different sampling 

intervals revealed new information about crash dynamics. Returning back to the specific 

case of Texas, this was true.  The model of the weekly data gave an ARMA(12,11) model 

with roots indicating seasonalities at approximately 25.9, 4.33, and 2.36 weeks, 

corresponding to about 181, 30.3, and 16.5 days, or about 6, 1, and ½ months (Fig. 6).  

These roots had magnitudes within <0.01 distance from 1 (Appendix 6.3), but parsimonious 

models were not checked for the weekly sampling interval data.  This is because weekly data 
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only indicated seasonalities at periods corresponding approximately to whole or fractional 

months, and no exact integer relationship exists between weeks and months, which would 

make any parsimonious model somewhat artificial.  Additionally, no roots suggested 

seasonality for weekly Illinois and Austin data. 

 

 
Figure 6. Roots of the AR part of the detrended Texas weekly crash model. 

 

Monthly data was similarly analyzed for Texas, Illinois, and Austin.   The initial model 

obtained for the Texas data was an AR(1) model whose residual autocorrelation function 

showed almost exactly 5% of its values exceeding the critical threshold of whiteness, which 

was not ideal.  Higher order models were fit until both the RSS decreased and a good 

autocorrelation function was found, leading to an ARMA(6,5) model.  This model had roots 

weakly suggesting seasonality of period 5.96 months (λ=0.989), and strongly at 2.4 months 

(λ=0.998), although parsimonious models were inadequate.  This monthly Texas data was 

the only case where the standard F-testing procedure was overridden to find a higher order 

model. 

 

3. Summary of Results 

 

Appendix 6.4 gives other remaining plots of the relevant data, models, residual 

autocorrelation functions, and autoregressive roots for the Texas, Illinois, and Austin data at 

daily, weekly, and monthly sampling intervals.  The table below summarizes the modeling 

results for the data sets.  Each region and sampling interval yielded different models of 

inconsistent order between (1,0) and (12,11).   

 

However, one consistent pattern among all the regions was that daily data exhibited 7-day 

seasonality, which makes sense if crashes follow a weekly pattern according to traffic rates.  

Seasonalities of other periods may be found among specific regions and at certain sampling 

intervals.   
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Furthermore, the above data suggests that the signal-to-noise ratio for ARMA models of 

crashes tends to be less than 1, meaning that the noise is very large relative to the model.  

This emphasizes the difficulty of modeling crashes and separating out real trends from 

noise. 

 

3. Prediction of Crashes 

 

1. Analysis Method 

 

A subset of the above data was analyzed to see how well ARMA models could predict future 

crashes.  Daily data was deemed less useful for prediction, since even if the number of 

crashes could be predicted for a particular day, a large region like a state probably could not 

respond practically to that.  Cities may find it useful, but only if they can rapidly mobilize and 

change service levels for each day.  The monthly data was not analyzed because the sample 
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sizes became less than 100, which could reduce model robustness.  The weekly state data 

were the focus of this analysis. 

 

The prediction step was chosen to be more than one month, or 5 weeks ahead for the 

weekly data.  This was chosen because, at least at the federal level, 90% of crashes take up 

to 30 days to be reported and recorded [6].  Assuming that crash data is only accurate 4 

weeks ago, a 5-step-ahead prediction would be needed to predict next week’s crash count.   

i.e. calculating the prediction of xt-4(5).   

 

Initially to examine the prediction method, arbitrary time periods were chosen to fit the 

model, with the remaining data used to check the prediction.  Plots of continuously updated 

predictions were examined for their accuracy.  For example, when predicting 2009-2010 

Texas data based on 2004-2008, a 95%CI of the prediction could be calculated based on the 

first 5 terms of the Green’s function and the standard deviation of the model residuals (Fig. 

3.1.1).   

 

 
Figure 3.1.1.  5-step-ahead prediction of 2009-2010 Texas weekly detrended crashes.  

 

A quantitative measure of the goodness of the prediction was the actual variance of the 

prediction error overall the whole predicted period.  In this case, for example, the prediction 

error variance was 3.79e5.  In contrast, a prediction of 2006-2010 data based on 2004-2005 

is shown below (Fig. 3.1.2), and it has a larger prediction error variance of 2.93e6, even if 

the 95% CI intervals in that case were narrower.  The prediction error improved when a 

shorter time period was being predicted, or when more data was used to form the 

prediction model. 
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Figure 3.1.2.  5-step-ahead prediction of 2006-2010 Texas weekly detrended crashes.  

 

 

Illinois data was more difficult to predict, as shown in Fig. 3.1.3., for example.  The 

spikes seen here are not modeled well.  More significantly, a drop in the mean value of 

the data occurs beginning around 2008, which consistently disrupted prediction models 

no matter what time period was the model basis, as several were tested.  Essentially the 

time series was not stationary, rendering the ARMA models inadequate for prediction.  

However, this deviation from the model beginning in 2008 can usefully indicate when a 

new model must be made. 

 

 
Figure 3.1.3.  5-step-ahead prediction of 2007-2010 Illinois weekly detrended crashes.  
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2. Effect of Model Time Period 

 

To examine the effect of the model time period on predictions, code was written to model 

2-year windows in the Texas weekly crash data, and then predict the following 2 years of 

crashes.  The windows were rolling, where it moved up by one week.  152 ARMA models 

and corresponding 5-step-ahead predictions could be made in this way.   

 

For the Texas data, a plot of the ARMA model orders as the window moved showed that the 

orders were not consistent and changed frequently (Fig. 3.2.1).  This suggests that the start 

and end of the time period for modeling is very influential on the ARMA model, and likely 

can change the resulting detected seasonalities and predictions. 

 

 
Figure 3.2.1.   ARMA model orders for Texas weekly data, in rolling 2-year time windows. 

 

A distribution plot (Fig. 3.2.2) of the AR orders of these models showed that AR orders 5 and 

1 appeared most frequently, and that orders greater than 7 were less common.  This 

suggests that model order still tends toward certain values for this data and is not random.   

 

 

 
Figure 3.2.2.   ARMA model AR order histogram for Texas weekly data, in rolling 2-year time windows. 
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Finally the prediction error variance of the next 2 years also was inconsistent, as the model 

time window rolled onward.  A plot of the prediction error variance is shown in Fig. 3.2.3, 

suggesting that prediction errors can be extremely large if the wrong time window is 

chosen. 

 

 
Figure 3.2.3.   2-year prediction error variance of ARMA models, based on rolling 2-year time windows. 

 

The Illinois state data suggested similar findings.  However, in addition, it had another 

frequency distribution of models for the rolling 2-year windows, as shown in Fig. 3.2.4. 

ARMA models with AR order 1 were most frequent, suggesting that this is associated with 

highly noisy data series that are difficult to predict.   

 

 
Figure 3.2.2.   ARMA model AR order histogram for Illinois weekly data, in rolling 2-year time windows. 
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Figure 3.3.1.  Weekly Texas prices for regular gasoline, 2004-2010. 

 

Data was examined again using 2004-2008 data to predict 2009-2010 data.  The standard 

Matlab code for one-input-one-output ARMA models was used to systematically fit a 

vectorial model to the gas price and detrended crash data.  F-testing and the corresponding 

model parameters are given in Appendix 6.5.  An overall model was found where the crash 

data (x2) could be represented by an (8,7) model and the gas price data (x1) could be 

represented by a (2,1) model.  The resulting prediction was plotted (Fig 3.3.2).  

 

 
Figure 3.3.2.  5-step-ahead prediction of 2009-2010 Texas weekly detrended crashes, using vectorial 

ARMA involving gas prices.  
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because the gas data may not be stationary either, especially from 2008-2009.  The sharp 

decrease in crashes after 2008 maybe suggests that the economic downturn caused fewer 

people to drive, thereby decreasing crashes. To examine this, other time series could be 

tested in vectorial models, such as economic indicators like GDP or unemployment rates.   

 

4. Discussion 

 

The modeling analysis performed here revealed several characteristics of crash count 

dynamics.  First, and most significantly, model orders and their dependent trends and 

seasonalities vary, and they are greatly determined by the region, time period, and sampling 

interval from which they are based.    

 

Nevertheless, the daily crash count data here consistently showed a 7-period seasonality, 

likely corresponding with the weekly cycles of higher traffic throughout the workweek and 

less traffic during the weekend.  Other seasonalities could be detected for specific places, 

times, and intervals.  The 6-month seasonality detected for Texas and Illinois could be 

weather-related or school-related, as crashes may follow seasonal storms or biannual 

migrations of students. 

 

Regarding prediction, care must be taken to avoid predicting nonstationary time series.  

However, if that cannot be avoided, as is the case with the Illinois crashes starting in 2008, 

these models become tools to see when crash patterns are changing, or when a new model 

is needed.  If a prediction is showing very large errors, a new model should be made with 

updated data.  Despite that warning, one-month old crash data may be good enough to 

predict next week’s crashes in some places, including Texas state.   

 

The results here have some limitations to their implications.  First, the data has only 

examined two states and one city, and clearly other regions can be examined.  Second, the 

data is more useful to insurance and trucking companies than government, since 

government is much more interested in crash fatalities rather than crashes themselves.  

Then this data only covers severe crashes, which discounts much financial losses from less 

serious accidents.  Finally these models cannot directly explain crash causes. 

 

Despite these limitations, this exercise has still provided useful information about crash 

patterns and how to employ ARMA models with them.  Industry and government could still 

use such models to help budget for impending crashes.  Future work should address the 

limitations described above by expanding the regions studied, analyzing fatalities, and using 

models that may account for non-stationary time series. 
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6. Appendices 

 

1. ROOTS OF DAILY ARMA MODELS 

 

 

Texas ARMA(10,9) 

   

root real imag magnitude 

angle 

(rad) angle(deg) period 

1 -0.90091 0.433716 0.9999 2.6929 154.3 2.333216 

2 -0.90091 -0.43372 0.9999 3.5903 205.7 

 3 -0.22257 0.974904 1 1.7953 102.9 3.499837 

4 -0.22257 -0.9749 1 4.4879 257.1 

 5 0.623333 0.781913 1 0.8978 51.4 6.99851 

6 0.623333 -0.78191 1 5.3854 308.6 

 

7 0.980019 0 0.98 0 0.0 

random 

walk 

8 0.831595 0.456602 0.9487 0.5021 28.8 12.51324 

9 0.831595 -0.4566 0.9487 5.7811 331.2 

 10 0.298797 0 0.2988 0 0.0 N/A 

 

Illinois ARMA(8,7) 

   

root real imag magnitude 

angle 

(rad) angle(deg) period 

1 -0.90096 0.433799 0.999953 2.692865 154.3 2.333216 

2 -0.90096 -0.4338 0.999953 3.590321 205.7 

 3 -0.22255 0.974523 0.999612 1.795318 102.9 3.499837 

4 -0.22255 -0.97452 0.999612 4.487868 257.1 

 5 0.622504 0.780877 0.998639 0.897774 51.4 6.99851 

6 0.622504 -0.78088 0.998639 5.385411 308.6 

 

7 0.968672 0 0.968672 0 0.0 

random 

walk 

8 0.165634 0 0.165634 0 0.0 

 

 

Austin ARMA(6,5) 

   

root real imag magnitude 

angle 

(rad) angle(deg) period 

1 -0.2221 0.974961 0.999938 1.794778 102.8 3.498 

2 -0.2221 -0.97496 0.999938 4.488407 257.2 

 3 0.621884 0.782134 0.999236 0.899043 51.5 6.999 

4 0.621884 -0.78213 0.999236 5.384142 308.5 

 5 0.956505 0 0.956505 0 0.0 

 6 0.031001 0 0.031001 0 0.0 
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2. PARSIMONIOUS MODEL F-TESTS FOR DAILY CRASH DATA 

Texas testing 

constant 

trend 7th roots period 7 period 7/2 period 7/3 

 

test 

ARMA(9,9) 

vs. (10,9) 

ARMA(3,9) 

vs. 

ARMA(10,9) 

ARMA(8,9) vs. 

ARMA(10,9) 

ARMA(8,9) vs. 

ARMA(10,9) 

ARMA(8,9) vs. 

ARMA(10,9) 

restricted A1 6.05E+07 6.15E+07 6.19E+07 6.17E+07 6.29E+07 

unrestricted A0 5.99E+07 5.99E+07 5.99E+07 5.99E+07 5.99E+07 

no restricted s 1 7 2 2 2 

samples N 2557 2557 2557 2557 2557 

no params r 20 20 20 20 20 

 

F 27.5858 9.8732 42.7134 39.4718 65.0024 

 

Fcrit95 3.845127 2.013185 2.999272 2.999272 2.999272 

Illinois testing 

constant 

trend 7th roots period 7 period 7/2 period 7/3 

 

test 

(7,7) vs 

(8,7) (1,7) vs (8,7) (6,7) vs (8,7) (6,7) vs (8,7) (6,7) vs (8,7) 

restricted A1 1.24E+08 1.32E+08 1.27E+08 1.26E+08 1.32E+08 

unrestricted A0 1.22E+08 1.22E+08 1.22E+08 1.22E+08 1.22E+08 

no restricted s 1 7 2 2 2 

samples N 2557 2557 2557 2557 2557 

no params r 16 16 16 16 16 

 

F 43.2804 31.6613 53.7346 44.4304 109.9783 

 

Fcrit95 3.845121 2.01318 2.999267 2.999267 2.999267 

Austin testing 

constant 

trend period 7 period 7/2 

 

 

test 

(6,5) vs 

(5,5) (6,5) vs (5,5) (6,5) vs (5,5) 

 restricted A1 1.08E+05 1.07E+05 1.13E+05 

  unrestricted A0 1.06E+05 1.06E+05 1.06E+05 

  no restricted s 1 1 1 

  samples N 1461 1461 1461 

  no params r 12 12 12 

  

 

F 16.4907 15.1278 84.4977 

  

 

Fcrit95 3.847884 3.847884 3.847884 
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3. WEEKLY MODEL ROOTS 

 

 

Texas ARMA(12,11) 

    

root real imag magnitude 

angle 

(rad) angle(deg) period 

period 

est 

1 -0.87702 0.45976 0.990225 2.658751 152.3 2.36321 2.333333 

2 -0.87702 -0.45976 0.990225 3.624435 207.7 

  3 0.118486 0.984012 0.991119 1.450962 83.1 4.33035 3.5 

4 0.118486 -0.98401 0.991119 4.832224 276.9 

  5 -0.18405 0.805096 0.825865 1.795539 102.9 N/A 7 

6 -0.18405 -0.8051 0.825865 4.487646 257.1 

  7 -0.52406 6.42E-17 0.524057 3.141593 180.0 constant 

 8 0.970148 0.240149 0.999429 0.242661 13.9 25.892 

 9 0.970148 -0.24015 0.999429 6.040525 346.1 

  10 0.890959 0.099417 0.896488 0.111125 6.4 N/A 

 11 0.890959 -0.09942 0.896488 6.172061 353.6 

  12 0.170984 0 0.170984 0 0.0 
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4. RELEVANT PLOTS OF MODELS 

 

TEXAS DAILY PLOTS  (see main body of report) 

 

TEXAS WEEKLY RAW DATA AND TREND 

 
 

TEXAS WEEKLY DETRENDED DATA AND ARMA(12,11) MODEL 

 
 

 

TEXAS WEEKLY MODEL RESIDUAL AUTOCORRELATION FUNCTION 

 
 

TEXAS WEEKLY MODEL AUTOREGRESSIVE ROOTS (see main body of report) 

 

TEXAS MONTHLY RAW DATA AND TREND 
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TEXAS MONTHLY DETRENDED DATA AND ARMA(1,0) MODEL 
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TEXAS MONTHLY MODEL RESIDUAL AUTOCORRELATION FUNCTION (ARMA(1,0)) 

 
 

TEXAS MONTHLY DETRENDED DATA AND ARMA(6,5) MODEL 

 
 

TEXAS MONTHLY MODEL RESIDUAL AUTOCORRELATION FUNCTION (ARMA(6,5)) 
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TEXAS MONTHLY MODEL AUTOREGRESSIVE ROOTS (ARMA(6,5)) 

 

 
ILLINOIS DAILY RAW DATA AND TREND 

 
 

ILLINOIS DAILY DETRENDED DATA AND ARMA(8,7) MODEL 
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ILLINOIS DAILY MODEL RESIDUAL AUTOCORRELATION FUNCTION 

 
 

ILLINOIS DAILY MODEL AUTOREGRESSIVE ROOTS  
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ILLINOIS WEEKLY DETRENDED DATA AND ARMA(2,1) MODEL 

 
 

ILLINOIS WEEKLY MODEL RESIDUAL AUTOCORRELATION FUNCTION 

 
 

ILLINOIS WEEKLY MODEL AUTOREGRESSIVE ROOTS  
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ILLINOIS MONTHLY RAW DATA AND TREND 

 
 

ILLINOIS MONTHLY DETRENDED DATA AND ARMA(4,3) MODEL 

 
 

ILLINOIS MONTHLY MODEL RESIDUAL AUTOCORRELATION FUNCTION 
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ILLINOIS MONTHLY MODEL AUTOREGRESSIVE ROOTS  

 
AUSTIN DAILY RAW DATA AND TREND 

 
 

AUSTIN DAILY DETRENDED DATA AND ARMA(6,5) MODEL 
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AUSTIN DAILY MODEL RESIDUAL AUTOCORRELATION FUNCTION 

 
 

AUSTIN DAILY MODEL AUTOREGRESSIVE ROOTS  

 
 

AUSTIN WEEKLY RAW DATA AND TREND 
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AUSTIN WEEKLY DETRENDED DATA AND ARMA(2,1) MODEL 

 
 

AUSTIN WEEKLY MODEL RESIDUAL AUTOCORRELATION FUNCTION 

 
 

AUSTIN WEEKLY MODEL AUTOREGRESSIVE ROOTS  
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AUSTIN MONTHLY RAW DATA AND TREND 

 
 

AUSTIN MONTHLY DETRENDED DATA AND ARMA(8,7) MODEL 

 
 

AUSTIN MONTHLY MODEL RESIDUAL AUTOCORRELATION FUNCTION 
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AUSTIN MONTHLY MODEL AUTOREGRESSIVE ROOTS  
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5. VECTORIAL ARMA F-TESTING: TEXAS 

 

x2 = output (crashes) 

 

Texas, 2008-10 

   

 

x1 = input (gas price) 

      

 

subscripts = row, col, delay 

     

         

 

Optimizing x2 Model order 

     

 

Parameters (2,1) (4,3) (6,5) (8,7) (10,9) (7,6) (8,6) 

x2 terms phi221 -0.94582 0.794306 -0.5168 -1.85962 -0.1004 -1.26044 0.038332 

 

phi222 0.108941 0.690734 0.179841 1.964175 -0.2434 0.854597 -0.83176 

 

phi223 

 

0.29434 -0.25733 -1.48439 0.840343 -0.31618 -0.29682 

 

phi224 

 

-0.157968 -0.27196 0.407134 0.182324 0.030882 -0.4576 

 

phi225 

  

0.271373 0.275864 0.205997 0.381715 0.41562 

 

phi226 

  

-0.02679 -0.69767 0.453547 -0.28129 0.609613 

 

phi227 

   

0.678202 -0.45689 -0.13766 -0.13326 

 

phi228 

   

-0.07588 0.368067 

 

0.055383 

 

phi229 

    

0.224833 

  

 

phi2210 

    

-0.23268 

  
x1 terms phi211 -386.055 -826.6637 -1061.46 -681.735 -868.166 -610.785 -832.034 

 

phi212 385.2658 259.5809 1535.442 1922.197 1445.67 2015.11 1431.075 

 

phi213 

 

-295.4835 -1077.93 -3287.52 -353.688 -2377.99 29.6125 

 

phi214 

 

842.2111 1389.947 4568.519 -573.935 2402.299 170.7565 

 

phi215 

  

-1082.88 -4626.55 -1.54737 -2373.01 -691.518 

 

phi216 

  

292.7548 4117.882 19.78648 1600.975 -835.805 

 

phi217 

   

-3270.35 532.9491 -418.33 817.4558 

 

phi218 

   

1255.649 218.394 

 

41.28626 

 

phi219 

    

-1228.92 

  

 

phi2110 

    

786.0997 

  
a2 terms theta21 -0.6337 1.287158 -0.12337 -1.54914 0.342347 -0.87148 0.446525 

 

theta22 

 

1.272468 0.115442 1.431731 -0.12859 0.551073 -0.73819 

 

theta23 

 

0.820431 -0.13151 -0.90371 0.926939 -0.03327 -0.58897 

 

theta24 

  

-0.35683 -0.09359 0.65144 -0.09943 -0.71779 

 

theta25 

  

0.498727 0.778478 0.736477 0.746832 0.430388 

 

theta26 

   

-1.13543 0.869333 -0.4739 0.941946 

 

theta27 

   

0.85071 -0.24749 

  

 

theta28 

    

0.50896 

  

 

theta29 

    

0.797141 

  

 

RSS 8.59E+07 6.94E+07 6.27E+07 5.31E+07 5.17E+07 6.01E+07 5.50E+07 

 

gamma(a22) 3.44E+05 2.91E+05 2.77E+05 2.47E+05 2.53E+05 2.72E+05 2.55E+05 

 

F-test 

 

(2,1) vs (4,3) (4,3) vs (6,5) (6,5) to (8,7) (8,7) to (10,9 (7,6) to (8,7) (8,6) to (8,7) 

 

s 

 

6 6 6 6 3 1 

 

N 

 

261 261 261 261 261 261 

 

r 

 

12 18 24 30 24 24 
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F 

 

9.8872 4.3021 7.1541 1.0836 12.9202 8.5403 

 

F95% 

 

2.135099 2.136008 2.136963 2.137968 2.64269 3.880995 

 

 

 

 

Optimizing x1 Model order 

 

 

Parameters (2,1) (4,3) (2,0) 

x2 terms phi120 -6.10E-06 -1.02E-06 -4.95E-06 

 

phi121 9.90E-07 1.36E-06 -2.78E-06 

 

phi122 1.34E-05 1.15E-05 1.34E-05 

 

phi123 

 

-2.19E-05 

 

 

phi124 

 

1.31E-05 

 
x1 terms phi111 -1.7234 -3.312719 -1.40644 

 

phi112 0.724073 4.501663 0.407319 

 

phi113 

 

-2.965068 

 

 

phi114 

 

0.776393 

 
a2 terms theta11 -0.39914 -2.018281 

 

 

theta12 

 

1.751858 

 

 

theta13 

 

-0.500605 

 

 

theta14 

   

 

theta15 

   

 

theta16 

   

 

theta17 

   

 

theta18 

   

 

theta19 

   

 

RSS 1.7026 1.6215 1.7541 

 

gamma(a22) 0.0069 0.0069 0.007 

 

F-test 

 

(2,1) vs (4,3) (2,0) vs (2,1) 

 

s 

 

6 1 

 

N 

 

261 261 

 

r 

 

12 6 

 

F 

 

2.0756 7.7132 

 

F95% 

 

2.135099 3.878184 

 


